This document describes how to extend GAlib's capabilities by defining your own genomes and genetic operators. The best way to customize the behavior of an object is to derive a new class. If you do not want to do that much work, GAlib is designed to let you replace behaviors of existing objects by defining new functions.
see also: library overview, class hierarchy, programming interface
Table of contents
|
|
// Class definition for the new genome object, including statically defined // declarations for default evaluation, initialization, mutation, and // comparison methods for this genome class. class MyGenome : public MyObject, public GAGenome { public: GADefineIdentity("MyGenome", 201); static void Init(GAGenome&); static int Mutate(GAGenome&, float); static float Compare(const GAGenome&, const GAGenome&); static float Evaluate(GAGenome&); static int Cross(const GAGenome&, const GAGenome&, GAGenome*, GAGenome*); public: MyGenome() : GAGenome(Init, Mutate, Compare) { evaluator(Evaluate); crossover(Cross); } MyGenome(const MyGenome& orig) { copy(orig); } virtual ~MyGenome() {} MyGenome& operator=(const GAGenome& orig){ if(&orig != this) copy(orig); return *this; } virtual GAGenome* clone(CloneMethod) const {return new MyGenome(*this);} virtual void copy(const GAGenome& orig) { GAGenome::copy(orig); // this copies all of the base genome parts // copy any parts of MyObject here // copy any parts of MyGenome here } // any data/member functions specific to this new class }; void MyGenome::Init(GAGenome&){ // your initializer here } int MyGenome::Mutate(GAGenome&, float){ // your mutator here } float MyGenome::Compare(const GAGenome&, const GAGenome&){ // your comparison here } float MyGenome::Evaluate(GAGenome&){ // your evaluation here } int MyGenome::Cross(const GAGenome& mom, const GAGenome& dad, GAGenome* sis, GAGenome* bro){ // your crossover here }
By convention, one of the arguments to a derived genome constructor is the objective function. Alternatively (as illustrated in this example), you can hard code a default objective function into your genome - just call the evaluator member somewhere in your constructor and pass the function you want used as the default.
Once you have defined your genome class, you should define the intialization, mutation, comparison, and crossover operators for it. The comparison operator is optional, but if you do not define it you will not be able to use the diversity measures in the genetic algorithms and/or populations.
Note that the genetic comparator is not necessarily the same as the boolean operator== and operator!= comparators. The genetic comparator returns 0 if the two individuals are the same, -1 if the comparison fails for some reason, and a real number greater than 0 indicating the degree of difference if the individuals are not identical but can be compared. It may be based on genotype or phenotype. The boolean comparators, on the other hand, indicate only whether or not two individuals are identical. In most cases, the boolean comparator can simply call the genetic comparator, but in some cases it is more efficient to define different operators (the boolean comparators are called much more often than the genetic comparators, especially if no diversity is being measured).
To work properly with the GAlib, you must define the following:
MyGenome( -default-args-for-your-genome-constructor ) MyGenome(const MyGenome&) virtual GAGenome* clone(GAGenome::CloneMethod) constIf your genome adds any non-trivial member data, you must define these:
virtual ~MyGenome() virtual copy(const GAGenome&) virtual int equal(const GAGenome&) constTo enable streams-based reading and writing of your genome, you should define these:
virtual int read(istream&) virtual int write(ostream&) constWhen you derive a genome, don't forget to use the _evaluated flag to indicate when the state of the genome has changed and an evaluation is needed. If a member function changes the state of your genome, that member function should set the _evaluated flag to gaFalse.
Assign a default crossover, mutation, initialization, and comparison method so that users don't have to assign one unless they want to.
It is a good idea to define an identity for your genome (especially if you will be using it in an environment with multiple genome types running around). Use the DefineIdentity macro (defined in id.h) to do this in your class definition. The DefineIdentity macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your classes.
When run-time type information (RTTI) has stabilized across compilers, GAlib will probably use that instead of the Define/Declare identity macros.
int main() { MyGenome genome; // test default constructor (if we have one) cout << "genome after creation:\n" << genome << endl; genome.initialize(); // test the initializer cout << "genome after initialization:\n" << genome << endl; genome.mutate(); // test the mutator cout << "genome after mutation:\n" << genome << endl; MyGenome* a = new MyGenome(genome); // test copy constructor MyGenome* b = new MyGenome(genome); MyGenome* c = genome.clone(GAGenome::CONTENTS); cout << "clone contents:\n" << *c << "\n"; MyGenome* d = genome.clone(GAGenome::ATTRIBUTES); cout << "clone attributes:\n" << *d << "\n"; a->initialize(); b->initialize(); cout << "parents:\n" << *a << "\n" << *b << "\n"; MyGenome::DefaultCrossover(*a, *b, c, d); // test two child crossover cout << "children of crossover:\n" << *c << "\n" << *d << "\n"; MyGenome::DefaultCrossover(*a, *b, c, 0); // test single child crossover cout << "child of crossover:\n" << *c << "\n"; a->compare(*b); // test the comparator delete a; delete b; delete c; delete d; return 0; }
Here is the implementation of an initializer for the GATreeGenome<int> class.
void TreeInitializer(GAGenome & c) { GATreeGenome<int> &child=(GATreeGenome<int> &)c; // destroy any pre-existing tree child.root(); child.destroy(); // Create a new tree with depth of 'depth' and each eldest node containing // 'n' children (the other siblings have none). int depth=2, n=3, count=0; child.insert(count++,GATreeBASE::ROOT); for(int i=0; i<depth; i++){ child.eldest(); child.insert(count++); for(int j=0; j<n; j++) child.insert(count++,GATreeBASE::AFTER); } }
Most genetic algorithms invoke the mutation method on each newly generated offspring. So your mutation operator should base its actions on the value of the mutation probability. For example, an array of floats could flip a pmut-biased coin for each element in the array. If the coin toss returns true, the element gets a Gaussian mutation. If it returns false, the element is left unchanged. Alternatively, a single biased coin toss could be used to determine whether or not the entire genome should be mutated.
Here is an implementation of the flip mutator for the GA1DBinaryString class. This mutator flips a biased coin for each bit in the string.
int GA1DBinStrFlipMutator(GAGenome & c, float pmut) { GA1DBinaryStringGenome &child=(GA1DBinaryStringGenome &)c; if(pmut <= 0.0) return(0); int nMut=0; for(int i=child.length()-1; i>=0; i--){ if(GAFlipCoin(pmut)){ child.gene(i, ((child.gene(i) == 0) ? 1 : 0)); nMut++; } } return nMut; }
Some genetic algorithms use sexual mating, others use asexual mating. If possible, define both so that your genome will work with either kind of genetic algorithm. If your derived class does not define a cross method, an error message will be posted whenever crossover is attempted.
Sexual crossover takes four arguments: two parents and two children. If one child is nil, the operator should be able to generate a single child. The genomes have already been allocated, so the crossover operator should simply modify the contents of the child genome as appropriate. The crossover function should return the number of crossovers that occurred. Your crossover function should be able to operate on one or two children, so be sure to test the child pointers to see if the genetic algorithm is asking you to create one or two children.
Here is an implementation of the two-parent/one-or-two-child single point crossover operator for fixed-length genomes of the GA1DBinaryStringGenome class.
int SinglePointCrossover(const GAGenome& p1, const GAGenome& p2, GAGenome* c1, GAGenome* c2){ GA1DBinaryStringGenome &mom=(GA1DBinaryStringGenome &)p1; GA1DBinaryStringGenome &dad=(GA1DBinaryStringGenome &)p2; int n=0; unsigned int site = GARandomInt(0, mom.length()); unsigned int len = mom.length() - site; if(c1){ GA1DBinaryStringGenome &sis=(GA1DBinaryStringGenome &)*c1; sis.copy(mom, 0, 0, site); sis.copy(dad, site, site, len); n++; } if(c2){ GA1DBinaryStringGenome &bro=(GA1DBinaryStringGenome &)*c2; bro.copy(dad, 0, 0, site); bro.copy(mom, site, site, len); n++; } return n; }
Here is the comparator for the binary string genomes. It simply counts up the number of bits that both genomes share. In this example, we return a -1 if the genomes are not the same length.
float GA1DBinStrComparator(const GAGenome& a, const GAGenome& b){ GA1DBinaryStringGenome &sis=(GA1DBinaryStringGenome &)a; GA1DBinaryStringGenome &bro=(GA1DBinaryStringGenome &)b; if(sis.length() != bro.length()) return -1; float count = 0.0; for(int i=sis.length()-1; i>=0; i--) count += ((sis.gene(i) == bro.gene(i)) ? 0 : 1); return count/sis.length(); }
Here is a simple evaluation function for a real number genome with a single element. The function tries to maximize a sinusoidal.
float Objective(GAGenome& g){ GARealGenome& genome = (GARealGenome &)g; return 1 + sin(genome.gene(0)*2*M_PI); }
Here is an implemenation that invokes the initializer for each genome in the population.
void PopInitializer(GAPopulation & p){ for(int i=0; i<p.size(); i++) p.individual(i).initialize(); }
Here is an implementation that invokes the evaluation method for each genome in the population.
void PopEvaluator(GAPopulation & p){ for(int i=0; i<p.size(); i++) p.individual(i).evaluate(); }
The GAScalingScheme class is a pure virtual (abstract) class and cannot be instantiated. To make your derived class non-virtual, you must define the clone and evaluate functions. You should also define the copy method if your derived class introduces any additional data members that require non-trivial copy.
The scaling class is polymorphic, so you should define the object's identity using the GADefineIdentity macro. This macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your objects.
Here is an implementation of sigma truncation scaling.
class SigmaTruncationScaling : public GAScalingScheme { public: GADefineIdentity("SigmaTruncationScaling", 286); SigmaTruncationScaling(float m=gaDefSigmaTruncationMultiplier) : c(m) {} SigmaTruncationScaling(const SigmaTruncationScaling & arg){copy(arg);} SigmaTruncationScaling & operator=(const GAScalingScheme & arg) { copy(arg); return *this; } virtual ~SigmaTruncationScaling() {} virtual GAScalingScheme * clone() const { return new SigmaTruncationScaling(*this); } virtual void evaluate(const GAPopulation & p); virtual void copy(const GAScalingScheme & arg){ if(&arg != this && sameClass(arg)){ GAScalingScheme::copy(arg); c=((SigmaTruncationScaling&)arg).c; } } float multiplier(float fm) { return c=fm; } float multiplier() const { return c; } protected: float c; // std deviation multiplier }; void SigmaTruncationScaling::evaluate(const GAPopulation & p) { float f; for(int i=0; i<p.size(); i++){ f = p.individual(i).score() - p.ave() + c * p.dev(); if(f < 0) f = 0; p.individual(i).fitness(f); } }
A selector may make its selections based either on the scaled (fitness) scores or on the raw (objective) scores of the individuals in the population. Note also that a population may be sorted either low-to-high or high-to-low, depending on which sort order was chosen. Your selector should be able to handle either order (this way it will work with genetic algorithms that maximize or minimize).
The selection scheme class is polymorphic, so you should define the object's identity using the GADefineIdentity macro. This macro sets a class ID number and the name that will be used in error messages for the class. You can use any number above 200 for the ID, but be sure to use a different number for each of your objects.
Here is an implementation of a tournament selector. It is based on the roulette wheel selector and shares some of the roulette wheel selector's functionality. In particular, this tournament selector uses the roulette wheel selector's update method, so it does not define its own. The select method does two fitness-proportionate selections then returns the individual with better score.
class TournamentSelector : public GARouletteWheelSelector { public: GADefineIdentity("TournamentSelector", 255); TournamentSelector(int w=GASelectionScheme::FITNESS) : GARouletteWheelSelector(w) {} TournamentSelector(const TournamentSelector& orig) { copy(orig); } TournamentSelector& operator=(const GASelectionScheme& orig) { if(&orig != this) copy(orig); return *this; } virtual ~TournamentSelector() {} virtual GASelectionScheme* clone() const { return new TournamentSelector; } virtual GAGenome& select() const; }; GAGenome & TournamentSelector::select() const { int picked=0; float cutoff; int i, upper, lower; cutoff = GARandomFloat(); lower = 0; upper = pop->size()-1; while(upper >= lower){ i = lower + (upper-lower)/2; if(psum[i] > cutoff) upper = i-1; else lower = i+1; } lower = Min(pop->size()-1, lower); lower = Max(0, lower); picked = lower; cutoff = GARandomFloat(); lower = 0; upper = pop->size()-1; while(upper >= lower){ i = lower + (upper-lower)/2; if(psum[i] > cutoff) upper = i-1; else lower = i+1; } lower = Min(pop->size()-1, lower); lower = Max(0, lower); GAPopulation::SortBasis basis = (which == FITNESS ? GAPopulation::SCALED : GAPopulation::RAW); if(pop->order() == GAPopulation::LOW_IS_BEST){ if(pop->individual(lower,basis).score() < pop->individual(picked,basis).score()) picked = lower; } else{ if(pop->individual(lower,basis).score() > pop->individual(picked,basis).score()) picked = lower; } return pop->individual(picked,basis); }
class RestrictedMatingGA : public GASteadyStateGA { public: GADefineIdentity("RestrictedMatingGA", 288); RestrictedMatingGA(const GAGenome& g) : GASteadyStateGA(g) {} virtual ~RestrictedMatingGA() {} virtual void step(); RestrictedMatingGA & operator++() { step(); return *this; } }; void RestrictedMatingGA::step() { int i, k; for(i=0; i<tmpPop->size()-; i++){ mom = &(pop->select()); k=0; do { k++; dad = &(pop->select()); } while(mom->compare(*dad) < THRESHOLD && k<pop->size()); stats.numsel += 2; if(GAFlipCoin(pCrossover())) stats.numcro += (*scross)(*mom, *dad, &tmpPop->individual(i), 0); else tmpPop->individual(i).copy(*mom); stats.nummut += tmpPop->individual(i).mutate(pMutation()); } for(i=0; i<tmpPop->size(); i++) pop->add(tmpPop->individual(i)); pop->evaluate(); // get info about current pop for next time pop->scale(); // remind the population to do its scaling for(i=0; i<tmpPop->size(); i++) pop->destroy(GAPopulation::WORST, GAPopulation::SCALED); stats.update(*pop); // update the statistics by one generation }
Here are three examples of termination functions. The first compares the current generation to the desired number of generations. If the current generation is less than the desired number of generations, it returns gaFalse to signify that the GA is not yet complete.
GABoolean GATerminateUponGeneration(GAGeneticAlgorithm & ga){ return(ga.generation() < ga.nGenerations() ? gaFalse : gaTrue); }The second example compares the average score in the current population with the score of the best individual in the current population. If the ratio of these exceeds a specified threshhold, it returns gaTrue to signify that the GA should stop. Basically this means that the entire population has converged to a 'good' score.
const float desiredRatio = 0.95; // stop when pop average is 95% of best GABoolean GATerminateUponScoreConvergence(GAGeneticAlgorithm & ga){ if(ga.statistics().current(GAStatistics::Mean) / ga.statistics().current(GAStatistics::Maximum) > desiredRatio) return gaTrue; else return gaFalse; }The third uses the population diversity as the criterion for stopping. If the diversity drops below a specified threshhold, the genetic algorithm will stop.
const float thresh = 0.01; // stop when population diversity is below this GABoolean StopWhenNoDiversity(GAGeneticAlgorithm & ga){ if(ga.statistics().current(GAStatistics::Diversity) < thresh) return gaTrue; else return gaFalse; }A faster method of doing a nearly equivalent termination is to use the population's standard deviation as the stopping criterion (this method does not require comparisons of each individual). Notice that this judges diversity based upon the genome scores rather than their actual genetic diversity.
const float thresh = 0.01; // stop when population deviation is below this GABoolean StopWhenNoDeviation(GAGeneticAlgorithm & ga){ if(ga.statistics().current(GAStatistics::Deviation) < thresh) return gaTrue; else return gaFalse; }