
Computers and Chemical Engineering 23 (1999) 327—339

Estimation of heat transfer parameters in a trickle-bed reactor using
differential evolution and orthogonal collocation
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Abstract

A new non-sequential technique is proposed for the estimation of effective heat transfer parameters using radial temperature profile
measurements in a gas—liquid co-current downflow through packed bed reactors (often referred to as trickle bed reactors). Orthogonal
collocation method combined with a new optimization technique, differential evolution (DE) is employed for estimation. DE is an
exceptionally simple, fast and robust, population based search algorithm that is able to locate near-optimal solutions to difficult
problems. The results obtained from this new technique are compared with that of radial temperature profile (RTP) method. Results
indicate that orthogonal collocation augmented with DE offer a powerful alternative to other methods reported in the literature. The
proposed technique takes less computational time to converge when compared to the existing techniques without compromising with
the accuracy of the parameter estimates. This new technique takes on an average 10 s on a 90 MHz Pentium processor as compared to
30 s by the RTP method. This new technique also assures of convergence from any starting point and requires less number of function
evaluations. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Trickle-bed reactor; Heat transfer parameters; Differential evolution; Orthogonal collocation; Radial temperature profile
method; Two-dimensional pseudo-homogeneous model

1. Introduction

Trickle-bed reactors are widely used in petroleum
and petro-chemical industries, and to a lesser extent in
chemical and pharmaceutical industries. They also have
a potential application in waste water treatment and in
bio-chemical reactions. Various flow regimes such as
trickle flow (at low liquid and low gas rates), pulse flow
(intermediate gas and liquid rates), dispersed bubble flow
(at high liquid and low gas rates), and spray flow (at low
liquid and high gas rates) are encountered in a trickle-bed
reactor depending upon the flowrates and physical prop-
erties of flowing phases and the packing geometry. The
most common mathematical model for the non-adiabatic
trickle-bed catalytic reactor is the two-dimensional
pseudo-homogeneous model (Tsang et al., 1976; Babu,
1993), which consists of coupled partial differential equa-
tions of the parabolic type. The inherent characteristic
of the homogeneous model is that the system can be
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considered as a continuum; no distinction is made between
the solid phase and the fluid phase. The assumption im-
plies that the reactant and the product concentrations in
the bulk fluid phase are same as that on the surface of the
catalyst pellet. A similar implication holds for the bed
temperature. The homogeneous model that describes the
physical and chemical processes is as follows:
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In the typical operation of a trickle-bed reactor the
heat transfer parameters, the effective radial thermal con-
ductivity of the bed, k

er
, and the effective wall-to-bed heat

transfer coefficient, h
w
, are unknown and need to be

estimated. These parameters are extremely important in
design and in process analysis. Once these parameters are
estimated, the temperature profile can be generated nu-
merically. The temperature profile in the reactor is im-
portant because it affects the selectivity, the yield and the
stability of the reactor.

Froment (1967) has demonstrated the sensitivity of the
homogeneous model to the effective parameters. He con-
cluded that changing the effective Peclet number of mass
transfer had a negligible effect on the temperature and
conversion, whereas a 10% increase either in k

er
or

h
w

greatly changed the temperature and conversion pro-
files in the reactor. Smith (1973) has analyzed the relative
importance of the heat and mass transfer effects in the
fixed-bed reactor and concluded that the radial temper-
ature gradient is the most important heat transfer charac-
teristic. Only a few studies have been reported on the heat
transfer characteristics (Weekman and Myers, 1965;
Hashimoto et al., 1976; Muroyama et al., 1978; Matsuura
et al., 1979a; b; Specchia and Baldi, 1979; Crine, 1982;
Lamine et al., 1996; Babu and Rao, 1997), which are
essential for the proper design of a trickle-bed reactor,
using only air—water and air—glycerol systems; although
a lot of information is available on hydrodynamics and
mass transfer for the same. Deviations of 30—40% were
reported for the prediction of h

w
with their own empirical

correlations by different authors even for their own data.
Moreover, the effect of gas rate on k

er
and h

w
is not well

understood with respect to the flow regimes encountered
in two-phase flow, especially in the pulse flow with pack-
ing geometry. Further, the pulse properties especially
liquid holdup and pulse frequency could play an impor-
tant role on the heat transfer parameters in pulse flow,
and none of the earlier studies except Babu (1993) de-
tailed their effects on heat transfer. These factors empha-
size the importance of heat transfer and suggest the
further need for study of the heat transfer phenomena.

The study of heat transfer characteristics in a trickle
bed can be simplified by testing the system with no
reaction occurring. In this case only the heat transfer
balance equation without the reaction term is needed, i.e.,

(¸C
pL
#GC*

pG
)
L¹
Lz

"k
erA

L2¹
Lr2

#

1

r

L¹
Lr B (3)

with boundary conditions

z"0, ¹"¹
o
, (4)

r"0,
L¹
Lr

"0, (5)

r"R, !k
er

L¹
Lr

"h
w
(¹!¹

w
). (6)

Various methods can be used to integrate Eq. (3)
subject to the boundary conditions. Among the most
popular are analytical solution, finite difference tech-
niques and the method of weighted residuals, the last two
being numerical methods. Virtually all of the previous
work on estimating the effective parameters has been
based on the analytical solution, which is
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Since the eigenvalues b
i
increase as i increases, there

are certain ranges of parameters within which only the
first few terms of the infinite series in Eqs. (7) and (8) is
significant (Coberly and Marshall, 1951; Tsang et al.,
1976; Specchia and Baldi, 1979). Most of the previous
studies, except Specchia and Baldi (1979) used graphical
methods for estimating k

er
and h

w
considering only

the first term of the infinite series in the analytical solu-
tion (Eq. (7)) of two-dimensional energy equation for
simplicity leading to uncertainty in the estimated values.
Babu (1993) concluded that the first seven terms of the
infinite series would be sufficient for ensuring good con-
vergence. Differing numbers and locations of temper-
ature measurements made on the packed bed system
have led to several types of parameter estimation
methods using the analytical solution. The relative ad-
vantages and disadvantages have been accounted by
Tsang et al. (1976).

Tsang et al. (1976) proposed a technique using ortho-
gonal collocation in an inverse problem. They used both
gradient and gradient-free optimization schemes for
parameter estimation. They showed that the results were
accurate enough and the computational time required
was less. They used Graeffe’s method along with New-
ton’s method for finding out the roots of the Jacobi
polynomial. But the Newton’s method is highly depen-
dent on the initial guess, is less accurate and takes more
computational time (Acton, 1970). Graeffe’s method in-
volves in squaring the polynomial and then taking the
square root of the solution, which reduces the accuracy
as the degree of the polynomial increases (Acton, 1970). It
has been shown that the objective function is very flat
near the minimum or the contours are long and narrow
(Tsang et al., 1976). For such kinds of problems the
gradient-based optimization techniques fail and com-
putational time taken is also large (Acton, 1970). Though
gradient-free optimization solves some of the problems of
the gradient methods, the global optimum is not assured
and the computational time taken is still large. Thus, to
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develop a new technique for the estimation of the heat
transfer parameters in a trickle bed, which is not only
accurate but also guarantees faster convergence is the
main objective of our study.

The results obtained from DE in the present study are
compared with those obtained from the radial temper-
ature profile method employing Powell’s method for
optimization. This new technique is highly robust and is
very fast in terms of computation time when compared to
the radial temperature profile method. The results show
that the Orthogonal Collocation augmented with the
DE’s offer a powerful alternative to the conventional
estimation techniques while demonstrating the potential
of Orthogonal Collation for solving boundary value
problems.

2. Orthogonal collocation

The trickle-bed reactor model is not amenable to an
analytical solution when the chemical reaction term is
non-zero. In this case, a numerical integration method
such as a finite difference technique must be used. How-
ever, the orthogonal collocation method (Villadsen and
Stewart, 1967; Villadsen and Michelsen, 1978; Finlayson,
1972, 1980), a technique categorized as a method of
weighted residuals, has been shown by Ferguson
and Finlayson (1970), and Finlayson (1972, 1980) to be
superior in some respects to the finite difference ap-
proaches. Furthermore, the orthogonal collocation
method, besides obtaining the solution, gives the possi-
bility of exploring the local stability within the system
(Perlmutter, 1972; Bosch and Padmanabhan, 1974;
Sorenson et al., 1973). Young and Finlayson (1973) have
used the orthogonal collocation technique to approxim-
ate the boundary condition at the entrance of a reactor
and solved the coupled non-linear partial differential
equations which take both the axial and radial disper-
sions into account. Finlayson (1971) has also shown
when the two-dimensional reactor model must be used
instead of one-dimensional model. Karanth and Hughes
(1974) used collocation to simulate the adiabatic packed-
bed reactor. Carey and Finlayson (1975) combined the
orthogonal collocation method with finite element
method to solve the catalyst pellet problem with large
Thiele modulus.

The orthogonal collocation method has been used in
the above studies for the simulation, i.e., as a numerical
method to solve the boundary value problems. Tsang et
al., (1976) used the orthogonal collocation method in an
inverse problem for the estimation of the heat transfer
parameters in a packed-bed reactor. Bosch and Hellinckx
(1974) used Lobatto quadrature combined with the collo-
cation method to estimate the parameters in the differen-
tial equations. This yielded a non-linear programming
problem. Polis et al. (1973) have used the Galerkin

technique to estimate the parameters in distributed sys-
tems. The Galerkin method is also classified as one of the
methods of weighted residuals which can be used to
reduce the partial differential equation to a set of ordi-
nary differential equations. The set of ordinary differen-
tial equations can then be used to simulate the system
response iteratively.

However unlike all other weighted residual methods
which determine the undetermined coefficients of the trial
function, the orthogonal collocation method gives the
solution of the dependent variables at the collocation
points directly. One can select the measurement locations
to coincide with the collocation points. The various
problems in estimating the parameters in a distributed
system from the point of view of accurate parameter
estimates have been discussed by Goodson and Polis
(1974). The details of the use of the orthogonal collo-
cation to estimate k

er
and h

w
are given below.

By rewriting Eqs. (3)—(6) in dimensionless form, the
parameter estimation problem becomes
Minimizing
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N is the number of collocation or measurement points.
Q is a N]N positive-definite weighting matrix, the iden-
tity matrix being used in the present study. The estima-
tion criterion used, when Q is taken to be an identity
matrix reduces from weighted least squares to a simple
least-squares estimation. A detailed derivation of the
solution of Eqs. (10)—(13) using orthogonal collocation is
given in Appendix A. Using orthogonal collocation
method, the estimation problem reduces to

Minimizing Eq. (9) subject to
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where B, B and A are the computational collocation
matrix and vectors given by Villadsen and Stewart
(1967). However, instead of using Graeffe’s method and
Newton’s method, in the present study, the ¸aguerre’s
method (Ralston and Rabinowitz, 1978) for finding the
roots of the Jacobi polynomial has been used. Laguerre’s
method is guaranteed to converge to all types of roots:
real, complex, single or multiple from any starting point
(Acton, 1970; Press et al., 1996). We used ¸º decomposi-
tion and ¸º back-substitution for finding out the inverse
of a matrix required in calculating the collocation ma-
trices (Villadsen and Stewart, 1967). The integration of
the ordinary differential equation, Eq. (14), was com-
puted using the fifth-order Runge—Kutta method with
adaptive step size control (Cash and Karp, 1990; Press
et al., 1996) for greater accuracy.

3. Differential evolution

Since their inception three decades ago, Genetic Algo-
rithms (GA) have evolved like the species they try to
mimic (Goldberg, 1989). Just as competition drives each
species to adapt to a particular environmental niche, so
too, has the pressure to find efficient solutions across the
spectrum of real-world problems forced genetic algo-
rithms to diversify and specialize (Davis, 1991; Moros et
al., 1996; Wolf and Moros, 1997; Chakraborti and Sastry,
1997, 1998). Differential Evolution (Price and Storn,
1997) is a search procedure similar to a GA applied on
real variables which is significantly fast at numerical
optimization and is also more likely to find a function’s
true global optimum. DE is in similar to a real coded GA
combined with an adaptive random search (ARS) (Boen-
der and Romeijn, 1995; Maria, 1998) with a normal
random generator. Among DE’s advantages are its
simple structure, ease of use, speed and robustness. DE
has been used to design several complex digital filters
(Price and Storn, 1997) and to design fuzzy logic control-
lers (Sastry et al., 1998). DE has been used in the previous
works for design and control application. In this paper,
DE is used for estimation purpose.

Upreti and Deb (1996) used GAs to optimize the
length of ammonia reactor by solving coupled differential
equations. They used binary strings to code the para-
meters; however this choice limits the resolution with
which an optimum can be located to the precision set by
the number of bits in the integer (Davis, 1991; Price and
Storn, 1997; Wolf and Moros, 1997). Wolf and Moros
(1997) encoded a floating point codes into mantissa,
exponent and sign of exponent; however the string en-
coding can be completely circumvented by using the
floating point codes di



Fig. 1. Schematic diagram of the experimental setup.

Recombination (crossover) provides an alternative and
complementary means of creating viable vectors from the
components of existing vectors. Previous studies on GA
for solving PDEs (Upreti and Deb, 1996; Wolf and Mo-
ros, 1997) used a uniform crossover, however, a DE uses
a nonuniform crossover that can take child vector para-
meters from one parent more often than it does from the
other. In order to increase the diversity of the parameter
vectors, the vector u

i,C
with
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)
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is formed where the acute brackets ST
D

denote the
modulo function with modulus number equal to dimen-
sion D. A certain sequence of the vector elements of u is
identical to the elements of v, the other elements of
u acquire the original values of x

i,C
. Choosing a subgroup

of parameters for mutation is similar to a process known
as crossover in evolution theory. The integer M is drawn
from the interval [0, D!1] with the probability
Pr(M"c)"(CR)c, CR3[0, 1] is the crossover probabil-
ity and constitutes a control variable for the above-men-
tioned scheme. The random decisions for both n and
M are made anew for each trial vector v.

Unlike many GAs, DE does not use proportional
selection, ranking or even an annealing criterion that
would allow occasional uphill moves. Instead the cost of
each trial vector is compared to that of its parent target
vector. The vector with the lower cost is rewarded by
being selected to the next generation. This selection of the
individuals to the next generation resembles tournament
selection except that each child that is pitted against one
of its parents, not against a randomly chosen competitor.
If the resulting child vector yields a lower objective func-
tion value than a predetermined population member, the
child vector replaces the parent vector with which it was
compared. The comparison vector can, but need not, be
a part of the generation process mentioned above. In
addition, the best parameter vector x

"%45,C
is evaluated for

every generation C in order to keep track of the progress
that is made during the minimization process.

4. Experimental setup and procedure

Experiments were carried out to obtain the data on
radial temperature profile in a trickle-bed reactor
(gas—liquid co-current downflow through packed beds).
The schematic diagram of the setup is shown in Fig. 1.
The experimental setup mainly consists of a packed-
bed column of 50 mm diameter, comprising of air—liquid
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distributor, calming section, jacketed test section and
air—liquid separator with other auxiliary parts. Air was
drawn from 3.7 kW double piston—double action com-
pressor, of maximum volumetric capacity of 14.98 m3/s
at STP and a working pressure of 12 atm. The air drawn
from the compressor was saturated with water in
a saturater. The saturated air was introduced at the top
of the column through a set of pre-calibrated rotameters
to the air—liquid distributor at a constant pressure of
4 atm, monitored by a pneumatic pressure regulator. The
air flowrates in the rotameter were controlled by needle
valves. The air was passed through a filter before entering
the distributor to remove traces of oil and dust, if any.
Water was pumped through a 4.5 kW pump and was
metered through a set of pre-calibrated rotameters to the
air—liquid distributor at the top of the column. Water
flowrates to the column were controlled by means of
globe valves. Air and water were uniformly distributed
through an air—liquid distributor at the top of the calm-
ing section. The air—liquid distributor essentially consists
of two sets of openings, 21 copper tubes for distributing
liquid and 16 nozzles for distributing air. The tubes and
the nozzles were alternately arranged on a triangular
pitch over the column cross-section. The number of
liquid distribution tubes per unit area was approximately
equal over the entire cross-section to ensure equal distri-
bution of liquid. The calming section consisted of a long
tube, which ensured a fully developed equilibrium
gas—liquid flow before it entered the test section.

The jacketed test section was designed for heat transfer
studies. It consists of a jacket in order to circulate hot
water at 60°C. Hot water was pumped with a 4.5 kW and
metered through a set of pre-calibrated rotameters. Be-
low the heat transfer section radial temperature profile
measurement section was provided. An air—liquid separ-
ator was provided at the bottom of the column to separ-
ate the air and the liquid phases coming out of the test
section. The radial temperature profile was obtained by
measuring the temperatures at the bottom of the test
section at three radial positions at rJ"0.0, 0.4, and 0.8,
and at three symmetric angular positions (120° apart) for
each radial position. Wall temperature was measured by
installing a thermocouple at the inside wall 3 mm above
from bottom of the jacketed test section. Thermocouples
were also installed at various locations to measure
the inlet temperature of test liquid, and inlet and
outlet temperatures of hot water. An INSREF constant
temperature bath having an accuracy of 0.01°C and a
MINCO platinum resistance thermometer bridge (MINCO
RTB8078, Model No. S7929 Pail120C) with an accuracy
of 0.025°C as a standard thermometer were used for
calibrating all the chormel—alumel thermocouples used
in the present study. All these thermocouples were con-
nected to an APTEK multi-channel digital temperature
scanner for recording the temperatures. The detailed
description of the experimental set-up, and the data

collection and reduction procedures are reported else-
where (Babu, 1993; Babu and Rao, 1994, 1997).

Air and water were fed to the column from the top
at the desired flowrates by means of pre-calibrated
rotameters. Hot water was circulated through the jacket
around the test section at sufficiently high flowrates
(25—30 l per minute) in order to maintain nearly constant
wall temperature, and the minimum and maximum tem-
perature difference between the inlet and the outlet hot
water streams were 0.3°C at low flowrates to 2°C at high
flowrates respectively of the flowing fluids. In general, it
took 20—40 min for attaining the steady state. After
steady state was attained, which was confirmed from the
constant values of flowrates and temperatures, the flow-
rates of air and water and the temperatures were
recorded. The average of the three angular positions
was taken as the temperature at each radial position.
This procedure was repeated for a wide range of air
(0.01—0.898 kg/m2 s) and water flowrates (3.16—
71.05 kg/m2 s), covering trickle, pulse and dispersed
bubble flow regimes. The length of the heat transfer test
section used for heat transfer experiments was 0.715 m.
The packing employed were 2.59 mm ceramic spheres,
4.05 and 6.75 mm glass spheres and 4.0 and 6.75 mm
ceramic raschig rings.

5. Results and discussions

The psuedocode of the DE algorithm used in the
present study is shown below:

f Initialize the values of D, NP, CR, F, j and maximum
number of generations MaxGen.

f Initialize all the vectors of the population randomly
between a given lower bound LB, and
upperbound UB
for i"1 to NP

for j"1 to D
(x

i,0
)
j
" LB # RandomNumber](UB - LB)

f Evaluate the cost of each vector. Cost here is the value
of the objective function to be minimized.
for i " 1 to NP
F

i
"e2Dx

i,0
f Find out the vector with lowest cost i.e., the best vector

so far
F

min
"F

1
and best"1

for i"2 to NP
if (F

i
(F

min
)

then F
min

"F
i
and best"i

f While the current generation is less than the maximum
number of generations perform recombination, muta-
tion, reproduction and evaluation of the objective func-
tion. while (C( MaxGen) do M
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Table 1
Radial temperature profile generation: DE vs RTP

G"0.0107, G*"8952.44,
¸C

pL
GC*

pG

"137.8, ¸"3.16,

D
e
"8.1, TF

G"0.2041, G*
pG
"6809.25,

¸C
pL

GC*
pG

"165.01, ¸"54.89,

D
e
"4.89, DBF

G"0.5, G*
pG

"9447.63,
¸C

pL
GC*

pG

"2.79, ¸"11.11,

D
e
"2.59, PF

EXP(°C) DE(°C) R¹P(°C) EXP(°C) DE(°C) R¹P(°C) EXP(°C) DE(°C) R¹P(°C)

56.48 56.605865 56.605843 38.00 38.075127 38.074937 57.30 57.276149 57.276099
56.95 56.776015 56.775936 38.98 38.876623 38.876634 57.46 57.493691 57.493661
57.20 57.248915 57.248689 41.09 41.118606 41.119144 58.08 58.069785 58.069799
58.91 58.91 58.91 49.85 49.85 49.85 59.12 59.12 59.12

The unit of D
e
is mm.

for i"1 to NP M
f Select two distinct vectors randomly from the

population other than the vector x
i,C

do r
1
"RandomNumber]NP while(r

1
"i)

do r
2
"RandomNumber]NP while((r

2
"i) OR

(r
2
"r

1
))

f Perform D binomial trails, change at least one
parameter of the trial vector u

i,C
and perform

mutation.
j"RandomNumber]D
for n"1 to D M

if ((RandomNumber(CR) OR (n"(D-1)))
then (u

i,C
)
j
"(x

i,C
)
j
#j * ((x

"%45,C
)
j
!(x

i,C
)
j
)

#F* ((x
r1,C

)
j
!(x

r2,C
)
j
)

else (u
i,C

)
j
"(x

i,C
)
j

j"Sn#1T
D

N
f Evaluate the cost of the trial vector.
F

trial
"e2Du

i,C

f If the cost of the trial vector is less than the parent
vector then select the trial vector to the next gen-
eration.
if (F

trial
)F

i
) M

F
i
"F

trial
if (F

trial
(F

min
)

F
min

"F
trial

and best"i N N /* for i"1 to
NP ends */

f Copy the new vectors u
i,C

to x
i,C

and increment
Gamma
C"C#1

f Check for convergence and break if converged. N /*
while C2 ends. */

f Print the results.

The collocation points or the measurement points
were chosen to be that of the radial temperature profile
measurements, i.e., r/R"0, 0.4, 0.8. The values of NP,
CR, j and F are fixed empirically following certain heu-
ristics (Price and Storn, 1997; Sastry et al., 1998): (1) F and
j are usually equal and are between 0.5 and 1.0, (2) CR
usually should be 0.3, 0.7, 0.9 or 1.0 to start with, (3) NP

should be of the order of 10]D and should be increased
in case of misconvergence, and (4) if NP is increased then
usually F has to be decreased. In the present study, the
values of D, NP, F, j and CR were taken as 2, 20, 0.7,
0.7 and 0.9, respectively. The maximum number of iter-
ations was kept as 100; however, in all the runs the
algorithm converged within 15 generations. The initial
values of Bi and P@

er
were generated using Knuth’s uni-

form random variate (Press et al., 1996). The matrix
inversions involved in computing the collocation ma-
trices were achieved using LU decomposition and LU
back-substitution. Runge—Kutta method with adaptive
step size control was used for integrating the differential
equation (Eq. (14)).

Altogether 232 experimental data points were ob-
tained covering a wide range of liquid and gas flowrates
using five packings of different size and shape. The
DE algorithm in conjunction with orthogonal collo-
cation method was employed using the experimental
temperature profile obtained for all the 232 data
points. The typical radial temperature profile given by
DE and RTP methods is shown in Table 1which shows
that the temperature profiles generated by both the
methods are almost similar to the experimental profile.
Similar trends were observed for all data points. The
minimum and maximum sum square error for DE
being 1.905052]10~6 and 7.57026]10~4, respectively,
and that for RTP being 1.905064]10~6 and
7.757032]10~4, respectively with the present experi-
mental data. The close agreement with the analytical
solution and the experimental value shows that non-
optimal selection of collocation points, which are taken
to be the measurement points and not the roots of the
Jacobi polynomial, does not cause significant errors. The
estimation errors (sum square error) given in Table 2
indicate that the temperature profile by DE is slightly
better than that with RTP (DE’s sum square error is
0.0001—0.001% less than RTP). Computational time
taken by DE and RTP algorithm for randomly selected
sample data points is compared in Fig. 2. Although the
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Table 2
Estimation characteristics: DE vs RTP

Sum square error hw ker Parameters

DE RTP DE RTP DE RTP L G D
e

Flow

4.637816e~5 4.637820e~5 894.626343 894.511169 17.688799 17.693483 3.16 0.017 8.1 TF
2.333386e~4 2.333388e~4 2508.752686 2507.566406 27.927656 27.941372 9.57 0.2401 8.1 PF
1.764492e~4 1.764498e~4 3195.485596 3195.852539 53.098129 53.086544 19.83 0.5000 8.1 PF
2.432793e~4 2.432798e~4 3999.604736 3999.616943 63.374241 63.372269 18.38 0.8980 8.1 PF
1.568811e~4 1.568813e~4 1645.458130 1645.295044 26.286270 26.290203 6.52 0.0459 8.1 TF
3.369437e~5 3.369470e~5 4505.336914 4505.336914 99.590958 99.575050 54.89 0.2401 4.89 DBF
1.905052e~6 1.905064e~6 1761.488281 1761.581177 16.218536 16.217493 3.16 0.5000 4.89 TF
1.340671e~4 1.340675e~4 4035.566406 4035.837646 65.492363 65.486969 36.87 0.0459 4.89 DBF
6.927241e~4 6.927244e~4 9719.313477 9718.518555 41.572712 41.573727 45.31 0.1020 2.59 DBF
7.757026e~4 7.757032e~4 11872.214844 11868.007812 58.668274 58.678162 60.18 0.0459 2.59 DBF

The unit of D
e
is mm.

Fig. 2. Computational time: DE vs RTP.

qualitative trends by both the methods is more or less the
same, the average time taken, based on all data points,
for an estimation by DE is 10 s as compared to 30 s by
RTP on a 90 MHz Pentium processor. The function
evaluations computed for sample data points by RTP
and DE is shown in Fig. 3. DE also takes less number of
function evaluations as compared to RTP (DE takes
average of 800 function calls as compared to 2000 evalu-
ations by RTP). The estimation of values of h

w
and

k
er

using both DE algorithm and RTP methods, are
compared in Figs. 4 and 5, respectively, which shows that
the estimation by DE is as accurate as the well-proven
RTP algorithm. The estimations are also tabulated in
Table 2 which show that the estimation error of DE is

lower when compared to that of RTP algorithm. It also
indicates that the estimation accuracy depends on the
accuracy of the measured temperature profile which, in
the present study is accurate only to two decimal places.
Since a wide range of air and water flowrates was used
covering the trickle, pulse and dispersed bubble flow for
generalization of the estimation algorithm, the estimated
parameters cover a wide range (894—11872 W/m3 K for
h
w

and 16-99 W/mK for k
er

).
The convergence criterion used for RTP is very strin-

gent: the objective function, its relative change, the para-
meter values and their relative changes and the gradient
of the objective function were all checked before
the optimization scheme was terminated. The RTP
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Fig. 3. Number of function evaluations: DE vs RTP.

Fig. 4. Estimated value of h
W

(W/m2K): RTPvsDE.

algorithm is said to have converged if it satisfies all the
conditions given below (Eq. (20)—(25)):

FC(d
1

(20)

DFC!FC~1
D(d

2
, (21)

k
er,min

)k
er,C

)k
er,max

, (22)

h
w,min

)h
w,C

)h
w,max

, (23)

Dk
er,C

!k
er,C~1

D(d
3
, (24)

Dh
w,C

!h
w,C~1

D(d
4
, (25)
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Fig. 5. Estimated value of k
er

(W/mK): RTP vs DE.

Fig. 6. Convergence of DE and RTP (x(0) is RMS error of the best initial guess of DE).

where d
1
, d

2
, d

3
and d

4
are constants. On the contrary, in

case of DE the termination criterion is when 90—95% of
the population have the same cost. The convergence
criterion used for DE is:

DpC!pC~1
D(d, (26)

where d is a constant (in the present study d"1.0]10~4)
and pC is the cost variance given by

pC"
+NP

i/1
(F

i,C
!FM C )2

NP!1
. (27)
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RTP either failed or took a long time to converge when
the initial guess of h

w
and k

er
was bad. Besides, DE initial

guesses generated randomly were spread throughout the
search space. Still the convergence of DE is faster than
that of RTP. The convergence of DE and RTP is com-
pared for sample data points in Fig. 6a—d, which clearly
shows that DE converges much faster than RTP irre-
spective of the initial guesses. As depicted in Fig. 6a even
though the initial estimation error of the best vector (the
vector with least cost) of DE algorithm is 0.092, and
in RTP method the initial estimation error is only
1.52]10~4, DE converged in 10 generations whereas
RTP took 32 iterations. Similarly, as shown in Fig. 6b—d,
the initial estimation errors of the best vector of DE
algorithm are 0.11, 0.047 and 0.54, respectively, and it
took 10, 15 and 12 generations respectively to converge.
On the other hand, even though the initial estimation
errors are 3.6]10~3, 6.0]10~3 and 6.5]10~4, RTP
method took 30, 30 and 31 iterations, respectively, to
converge. The results clearly illustrate that DE is a design
tool of great utility that is immediately accessible for
practical applications.

The previous studies (Weekman and Myers, 1965;
Hashimoto et al., 1976; Muroyama et al., 1978; Matsuura
et al., 1979a, b; Specchia aand Baldi, 1979; Crine, 1982;
Lamine et al., 1996; Babu and Rao, 1997) on heat transfer
effects in trickle-bed reactors have been conducted on
non-reacting systems (air—water or air—glycerol). In the
present study, the DE algorithm was applied on an
air—water system as, to the best of our knowledge, no
radial temperature profile data is available for trickle-bed
reactors with reacting systems. As stated earlier, with the
reaction term the pseudo-homogeneous model equations
cannot be solved analytically. Since the proposed DE
algorithm uses orthogonal collocation for solving the
model equations which can also be applied for systems
with reaction. However, from the results shown above, it
can be predicted that the DE algorithm will be equally
effective in estimating heat transfer parameters in the
presence of reaction effects.

6. Conclusions

The present study clearly shows the potential for using
DE in estimating the heat transfer parameters in trickle-
bed reactors. In most of the studies carried out earlier in
the estimation of heat transfer parameters in packed bed
reactors, researchers have focused on using the first few
terms of the analytical solution of the model equation
and have used either gradient based or non-gradient
based traditional optimization techniques for the estima-
tion of h

w
and k

er
. Since the parameters are floating point

and also due to its simple structure, ease of use, speed and
robustness, it has been shown that a DE is the more
appropriate choice for optimization. The results were

compared with that of a RTP using analytical solution
with Powell’s method for estimation. In previous studies,
DE has been used for design and control purposes, but in
the present study DE is used as an estimator.

DE algorithm is much faster, has less computational
burden when compared to the RTP algorithm and the
estimation is much more accurate. It is also observed that
DE algorithm converges to the global optimum irre-
spective of its initial population, whereas the RTP-
Powell algorithm needed an initial guess nearer to the
global optimum for convergence. The results presented in
this study depict the scope of Differential Evolution in
estimating the heat transfer parameters of a trickle-bed
reactor. DE is more effective in terms of faster conver-
gence, greater accuracy, lesser number of function
evaluation and robustness. Based on these results, it is
concluded that DE can be a very valuable resource for
accurate and faster estimation of the heat transfer para-
meters, in multi-phase reactors such as trickle-bed
reactors.
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Appendix A. Orthogonal collocation method

The equations of the boundary value problem to be
solved (Eq. (10)—(13)) are

L¹I
LzJ

"P@
er

1

rJ
L
LrJ ArJ

L¹I
LrL B ,

zJ"0, ¹I "¹I
d

rJ"0,
L¹I
LrJ

"0,

rJ"1, !

L¹I
LrJ

"Bi¹I

In orthogonal collocation method, the unknown solu-
tion is expanded in terms of known expansion functions
with arbitrary coefficients. One choice is

¹I (rJ , zJ )"¹I (1, zJ )#(1!rJ 2)
N
+
i/0

a
i
P
i~1

(rJ 2) (A.1)

in which the P
i
(rJ 2) are polynomials of degree i in rJ 2 and

are defined to be orthogonal with the condition

P
1

0

¼(rJ 2)P
k
(rJ 2 )P

m
(rJ 2)rJ drJ"0, k)m!1 (A.2)
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The polynomials defined by Eq. (A.2) are Jacobi poly-
nomials and are given explicitly for cylindrical coordi-
nates by

P
i
(rJ 2)"f (!i, i#2, 1, rJ 2) (A.3)

"1#
(!i) (i#2)

(1!)2
rJ 2#2

#

(!i)(!i#1)2 (!1)(i#2)2 (i#2#i)

(i!)2
rJ 2i

(A.4)

The gradient and the Laplacian operators for the func-
tion ¹I (rJ , zJ ) of Eq. (A.1) are given by

A
L¹I
LrJ K

r/ri
B"

N`1
+
j/1

A
ij
¹I (rJ

j
, zJ ), (A.5)

+2¹I D
r
"r

i
"A

1

rJ
L
LrJ ArJ

L¹I
LrJ B K

r/ri
B"

N`1
+
j/1

B
ij
¹I (rJ

j
, zJ ). (A.6)

Using Eqs. (A.5) and (A.6), the boundary value problem
for a symmetric profile (Eqs. (10)—(13)) reduces to an
initial value problem as follows:

d¹I
i

dzJ
"P@

er

N`1
+
j/1

B
ij
¹I
j
, j"1, 2,2 , N, (A.7)

IC ¹I
i
(0)"¹I

d
, (A.8)

BC !

N`1
+
j/1

A
N`1,j

¹I
j
"Bi¹I

N`1
. (A.9)

The summation limit N#1 arises from N collocation
points plus one boundary condition.

Nomenclature

A collocation vector
A

ij
element of the collocation matrix A

b
i

coefficients of the analytical solutions
B collocation matrix
B collocation vector
Bi biot number
B
ij

element of the collocation matrix B
C

A
concentration of reactant A, kmol/m3

C
o

inlet concentration, kmol/m3

C
p

specific heat, J/kgK
C*

pG
rate of change of enthalpy with respect
to the rise in temperature of the gas
phase, J/kgK

C
pL

specific heat of liquid, J/kgK
CR (0)CR)1) crossover constant
*H heat of reaction, J/kg
D dimension
D

e
effective diameter of the packing, m

D
er

effective diffusivity, m2/s
F cost or the value of the objective function
FM average cost

F (0(F)1.2) scaling factor
G gas flowrate, kg/m2 s
h
w

Wall heat transfer coefficient, W/m2 K
k
er

effective thermal conductivity of the
bed, W/mK

¸ liquid flowrate, kg/m2 s
N measurement points or number of col-

location points
NP population size
M
(0(M(D!1) random integer
P
i

Jacobi polynomial of order i
P@
er

modified Peclet number,
("k

er
Z/(¸C

pL
#GC*

pg
)R2 )

Pr binomial probability function
Q positive-definite weighting matrix
r radial position in trickle bed, m
rJ dimensionless radius, r/R
r
A

reaction rate
R trickle-bed radius, m
¹ temperature, K
¹I temperature vector, ("¹(rJ , zJ )!¹

w
) K

¹I
d

Temperature vector, ("¹
o
!¹

w
), K

¹
o

inlet fluid temperature, K
¹
w

wall temperature, K
u fluid velocity, m/s
u, v trial vectors
x
best,C

vector with minimum cost in genera-
tion C

x
i,C

ith vector in generation C
xC1,C

, x
r2,C

randomly selected vector
Z length of the trickle bed, m
z axial direction in the trickle bed, m
zJ dimensionless axial position

Greek letters
d,d

1
,d

2
,d

3
,d

4
constants

o dimensionless temperature vector,
¹I (rJ , 1)/¹I

d
)

e void fraction of the bed
c integer
C generation number
j(0(j(1.2) greediness scaling factor
o
B

catalyst bulk density, kg/m3

o
f

fluid density, kg/m3

p" cost variance in generation "

Abbreviations
ARS adaptive random search
DBF dispersed bubble flow
DE differential evolution
GA Genetic Algorithms
PDE Partial differential equation
PF pulse flow
RTP radial temperature profile method
TF trickle flow
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